Задача Коши Примеры решения типовых задач по математике Метод Фурье Методом Эйлера Метод итераций Аналитическая геометрия Кривые второго порядка Решение систем линейных уравнений

Примеры решения типовых задач по математике

Базис и разложение векторов

Определение 1.8. Линейной комбинацией векторов  называется вектор , а числа  - коэффициентами линейной комбинации.

Определение 1.9. Совокупность векторов  называется линейно независимой, если существуют такие числа , среди которых хотя бы одно отлично от нуля, что ; если же для заданных векторов равенство выполняется только тогда, когда все  , то вектора  называют линейно зависимыми.

Теорема 1.1. Пусть даны два ненулевых и неколлениарных вектора   и . Тогда любой вектор  можно представить в виде:   и притом, единственным образом.

Такое представление вектора называют разложением вектора по базису, набор  – базисом, а коэффициенты при базисе:  – координатами разложения.

С базисом на плоскости можно связать систему координат. Для этого на плоскости зафиксируется начало координат – точку О и тогда каждой точке А на плоскости соответствует вектор , который называется радиус-вектором точки. Координаты радиуса-вектора при разложении по базису  называются координатами точки в построенной системе координат: .

Основные понятия теории дифференциальных уравнений Дифференциальным уравнением называют уравнение, в котором неизвестной является функция одной или нескольких переменных, причем в уравнение входят производные этой функции.

Самая распространенная система координат образуется двумя взаимно перпендикулярными векторами , длина которых равна единице: . Такая система координат называется декартовой прямоугольной системой координат.

Обычно векторы декартового базиса обозначают как , а координаты вектора  относительно декартова базиса как .

В декартовой системе координат справедливо свойство: длина вектора   равна: .

Кроме декартовой системы координат существует полярная и криволинейная система координат.

В общем случае введенный в пространстве базис называют аффинным, и, соответственно, систему координат, состоящую из произвольной точки  и векторного аффинного базиса пространства называют аффинной системой координат этого пространства. Точка   - начало аффинной системы координат.

Для любой системы координат (не только декартовой) справедливы следующие свойства:

1) линейные операции над векторами сводятся к таким же операциям над их соответствующими координатами;

2) координаты вектора равны разностям соответствующих координат его начала и конца;

3) векторы  и  коллинеарны тогда и только тогда, когда их координаты пропорциональны:

Пример 1.2.

Даны два вектора  и . Доказать, что они могут быть базисом.

Решение:

По определению вектора могут быть базисом, если они ненулевые и неколлениарны, поэтому для доказательства нужно проверить выполнение 3 свойства – соотношение координат векторов не должно быть равным.

  равенство неверно, значит, вектора и  неколлениарны.

Ответ: вектора  и  являются базисом.

Пример 1.3.

Разложить по базису  и  вектор .

Решение: Обозначим координаты вектора  как ; тогда разложение вектора  по базису  и  можно записать по формуле: . Согласно свойству 1, операции над векторами можно заменить операциями над их координатами; подставим координаты в уравнение, получаем следующую систему: . Решив эту систему, получаем

Ответ: .

Метод прогонки для уравнения теплопроводности

Решение уравнения движения грунта Пусть одномерное перемещение частиц пластически сжимаемого грунта происходит параллельно оси x

В данном разделе рассматриваются такие геометрические объекты, как линии, поверхности и т.п. Исследование этих объектов заменяется исследованием их координат, представленных в виде уравнений. В начале раздела приводятся необходимые сведения из векторной алгебры.


Вычислить определитель матрицы