Математика Лекции и примеры решения задач Действия с матрицами Аналитическая геометрия Поверхности и линии в пространстве Математический анализ Предел функции на бесконечности Обратная функция

Линейная и векторная алгебра Аналитическая геометрия Математический анализ

РЯД ФУРЬЕ ДЛЯ НЕПЕРИОДИЧЕСКОЙ ФУНКЦИИ.

Ряды Фурье в комплексной форме

Пусть  – непериодическая функция, заданная на всей числовой оси. Так как сумма тригонометрического ряда является периодической функцией, то очевидно, что данная непериодическая функция не может быть разложена в ряд Фурье. Но если функция задана на конечном интервале , то для нее можно построить ряд Фурье, который имел бы ее своей суммой на этом интервале.

Для этого рассматривают вспомогательную функцию  периода , значения которой на интервале  совпадают со значениями функции   (рис. 6).

 


 y четное y 

   

 

 

 производная 

 -3 -2 -  2 3 x х

 

 нечетное 

 

 Рис. 6 Рис. 7

Если для функции  выполняется условие теоремы Дирихле, то ее можно представить соответствующим рядом Фурье. Этот ряд на интервале  во всех точках непрерывности функции будет иметь своей суммой .

Иногда приходится иметь дело с функциями, заданными только в интервале . В этом случае мы можем сначала продолжить по какому-либо закону фукнцию на интервал , а затем продолжить на всю числовую прямую периодически с периодом . Удобнее всего продолжить функцию на интервал  четным или нечетным образом (рис. 7). В первом случае ряд Фурье будет содержать только косинусы и свободный член. Во втором случае ряд Фурье будет содержать только синусы.

Рассмотрим примеры разложения в ряд Фурье непериодической функции.

1. Разложить в ряд Фурье функцию , заданную на отрезке  уравнением .

Решение. Функция может быть разложена в ряд Фурье бесчисленным количеством способов. Рассмотрим два наиболее важных варианта разложения.

 y

 1/2 

 

 -3 -2 -1 0 1  2 3 4 5 6 7 8 x

 Рис. 8

А. Доопределим функцию  на отрезке  четным образом (рис. 8). 

Имеем .

;

  0

 .

Еще раз интегрируем по частям:

 0

.

Итак,

.

Б. Доопределим функцию  на отрезке  нечетным образом (рис. 9).

 y

 1/2 

 

 -3 -2 -1 0 1 2  3 4 5 6 x

 

 Рис. 9

 0

 0 

.

Итак, .

.

Рассмотрим свойства определителей.

Свойство 1. При транспонировании матрицы ее определитель не меняется.

Это свойство устанавливает равноправность строк и столбцов определителя, поэтому определение определителя можно сформулировать так:

Определителем квадратной матрицы  -го порядка  называется число:

,

(9.4)

где  ‑ элементы первого столбца матрицы (9.2), а  их алгебраические дополнения.

Свойство 2. Если поменять местами две строки или два столбца матрицы , то ее определитель изменит знак на противоположный.

Свойства 1 и 2 позволяют обобщить формулы (9.3) и (9.4) следующим образом:

Определитель квадратной матрицы -го порядка (будем в дальнейшем говорить определитель -го порядка) равен сумме попарных произведений любой строки (столбца) на их алгебраические дополнения.

, или .

Свойство 3. Определитель, у которого две строки или два столбца одинаковы, равен нулю.

Действительно, поменяем в определителе  две одинаковые сроки местами. Тогда, по свойству 2 получим определитель , но с другой стороны, определитель не изменится, т.е. . Отсюда .

Свойство 4. Если все элементы какой-нибудь строки (столбца) определителя  умножить на число , то определитель умножится на .

.

Умножим элементы -той строки на . Тогда получим определитель:

.

Следствие 1. Если все элементы какой-нибудь строки (столбца) имеют общий множитель, то его можно вынести за знак определителя.

Следствие 2. Если все элементы какой-нибудь строки (столбца) равны нулю, то определитель равен нулю.

Свойство 5. Определитель, у которого две строки (два столбца) пропорциональны, равен нулю.

Пусть -я строка пропорциональна -ой строке. Вынося коэффициент пропорциональности за знак определителя, получим определитель с двумя одинаковыми строками, который по свойству 3 равен нулю.

Свойство 6. Если каждый элемент строки (столбца) определителя  есть сумма двух слагаемых, то определитель  равен сумме двух определителей: у одного из них -той строкой (столбцом)служат первые слагаемые, а у другого – вторые.

Разложив определитель   по -той строке получим:

.

Свойство 7. Определитель не изменится, если к элементам какой-нибудь строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Прибавив к элементам -той строки определителя   соответствующие элементы -ой строки, умноженные на число , получим определитель . Определитель   равен сумме двух определителей: первый есть , а второй равен нулю, так как у него -тая и -тая строки пропорциональны.

Свойство 8. Определитель диагональной матрицы равен произведению элементов, стоящих на главной диагонали, т.е.:

Свойство 9. Сумма произведений элементов какой-нибудь строки (столбца) определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Рассмотрим вспомогательный определитель , который получается из данного определителя  заменой -той строки -той строкой. Определитель  равен нулю, так как у него две одинаковые строки. Разложив его по -той строке получим:

.

Большое значение имеет следующий критерий равенства определителя нулю. Определитель квадратной матрицы равен нулю тогда и только тогда когда его строки (столбцы) линейно зависимы.

Строки (столбцы) матрицы называются линейно зависимыми, если одна (один) из них является линейной комбинацией с действительными коэффициентами остальных.

Теорема об определителе произведения двух квадратных матриц. Определитель произведения двух квадратных матриц равен произведению определителей этих квадратных матриц, т.е. .


Пример. Изменить порядок интегрирования