Металлы, диэлектрики и полупроводники Выпрямление на контакте металл — полупроводник Мощность, выделяемая в цепи переменного тока Энергия электромагнитных волн

Элементы физики атомного ядра и элементарных частиц

Цепная реакция деления

Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деления является требование k ³ 1.

Оказывается, что не все образующиеся вторичные нейтроны вызывают последующее деление ядер, что приводит к уменьшению коэффициента размножения. Во-первых, из-за конечных размеров активной зоны (пространство, где происходит цепная реакция) и большой проникающей способности нейтронов часть из них покинет активную зону раньше, чем будет захвачена каким-либо ядром. Во-вторых, часть нейтронов захватывается ядрами неделящихся примесей, всегда присутствующих в активной зоне. Кроме того, наряду с делением могут иметь место конкурирующие процессы радиационного захвата и неупругого рассеяния.

Коэффициент размножения зависит от природы делящегося вещества, а для данного изотопа — от его количества, а также размеров и формы активной зоны. Минимальные размеры активной зоны, при которых возможно осуществление цепной реакции, называются критическими размерами. Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществления цепной реакция, называется критической массой.

Скорость развития цепных реакций различна. Пусть Т — среднее время жизни одного поколения, а N — число нейтронов в данном поколении. В следующем поколении их число равно kN, т. е. прирост числа нейтронов за одно поколение dN = kN—N = N(k—1). Прирост же числа нейтронов за единицу времени, т. е. скорость нарастания цепной реакции,

  (266.1)

Интегрируя (266.1), получим

где N0 — число нейтронов в начальный момент времени, а N — их число в момент времени t. N определяется знаком (k—1). При k>1 идет развивающаяся реакция, число делений непрерывно растет и реакция может стать взрывной. При k=1 идет самоподдерживающаяся реакция, при которой число нейтронов с течением времени не изменяется. При k<1 идет затухающая реакция.

Цепные реакции делятся на управляемые и неуправляемые. Взрыв атомной бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хранении не взорвалась, в ней U (или Pu) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычного взрыва эти массы сближаются, общая масса делящегося вещества становится больше критической и возникает взрывная цепная реакция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная реакция начинается за счет имеющихся нейтронов спонтанного деления или нейтронов космического излучения. Управляемые цепные реакции осуществляются в ядерных реакторах (см. § 267).

В природе имеется три изотопа, которые могут служить ядерным топливом (U: в естественном уране его содержится примерно 0,7%) или сырьем для его получения (Th и U: в естественном уране его содержится примерно 99,3%). Th служит исходным продуктом для получения искусственного ядерного топлива U (см. реакцию (265.2)), a U, поглощая нейтроны, посредством двух последовательных b–-распадов — для превращения в ядро Pu:

  (266.2)

Реакции (266.2) и (265.2), таким образом, открывают реальную возможность воспроизводства ядерного горючего в процессе цепной реакции деления.

В развитие квантовой физики внесли свой вклад многие выдающиеся отечест-венные и зарубежные ученые: Э. Резерфорд, Н. Бор, П. Кюри, М. Складовская-Кюри, М. Лауэ, Луи де Бройль, В. Гейзенберг, В. Паули, П. Дирак, Э. Шредингер, И. Е. Тамм, Фредерик и Ирен Жолио-Кюри, О. Гаи, Э. Ферми, Л. Д. Ландау, В. А. Фок, Д. В. Скобельцын, А. И. Алиханов, В. И. Векслер, И. В. Курчатов и многие другие.
Физика полупроводников