Применение интерференции света Разрешающая способность оптических приборов Электронная теория дисперсии света Поляризационные призмы и поляроиды Применение фотоэффекта Элементы квантовой механики

Оптическая физика

Поляризационные призмы и поляроиды

В основе работы поляризационных приспособлений, служащих для получения поляризованного света, лежит явление двойного лучепреломления. Наиболее часто для этого применяются призмы и поляроиды. Призмы делятся на два класса:

1) призмы, дающие только плоскополяризованный луч (поляризационные призмы);

2) призмы, дающие два поляризованных во взаимно перпендикулярных плоскостях луча (двоякопреломляющие призмы).

Поляризационные призмы построены по принципу полного отражения (см. § 165) одного из лучей (например, обыкновенного) от границы раздела, в то время как другой луч с другим показателем преломления проходит через эту границу. Типичным представителем поляризационных призм является призма Ни2коля*, называемая часто ни2колем. Призма Николя (рис. 281) представляет собой двойную призму из исландского шпата, склеенную вдоль линии АВ канадским бальзамом с п=1,55. Оптическая ось ОО' призмы составляет с входной гранью угол 48°. На передней грани призмы естественный луч, параллельный ребру СВ, раздваивается на два луча: обыкновенный (nо=1,66) и необыкновенный (ne=1,51). При соответствующем подборе угла падения, равного или большего предельного, обыкновенный луч испытывает полное отражение (канадский бальзам для него является средой оптически менее плотной), а затем поглощается зачерненной боковой поверхностью СВ. Необыкновенный луч выходит из кристалла параллельно падающему лучу, незначительно смещенному относительно него (ввиду преломления на наклонных гранях АС и BD).

* У. Николь (1768—1851) — шотландский ученый. Работа и энергия. Работа силы. Элементарной работой называется скалярное произведение вектора силы на элементарное перемещение материальной точки:

Двоякопреломляющие призмы используют различие в показателях преломления обыкновенного и необыкновенного лучей, чтобы развести их возможно дальше друг от друга. Примером двоякопреломляющих призм могут служить призмы из исландского шпата и стекла, призмы, составленные из двух призм из исландского пшата со взаимно перпендикулярными оптическими осями. Для первых призм (рис. 282) обыкновенный луч преломляется в шпате и стекле два раза и, следовательно, сильно отклоняется, необыкновенный же луч при соответствующем подборе показателя преломления стекла n (n»ne) проходит призму почти без отклонения. Для вторых призм различие в ориентировке оптических осей влияет на угол расхождения между обыкновенным и необыкновенным лучами.

Двоякопреломляющие кристаллы обладают свойством дихроизма, т. е. различного поглощения света в зависимости от ориентации электрического вектора световой волны, и называются дихроичными кристаллами. Примером сильно дихроичного кристалла является турмалин, в котором из-за сильного селективного поглощения обыкновенного луча уже при толщине пластинки 1 мм из нее выходит только необыкновенный луч. Такое различие в поглощении, зависящее, кроме того, от длины волны, приводит к тому, что при освещении дихроичного кристалла белым светом кристалл по разным направлениям оказывается различно окрашенным.

Дихроичиые кристаллы приобрели еще более важное значение в связи с изобретением поляроидов. Примером поляроида может служить тонкая пленка из целлулоида, в которую вкраплены кристаллики герапатита (сернокислого иод-хинина). Герапатит — двоякопреломляющее вещество с очень сильно выраженным дихроизмом в области видимого света. Установлено, что такая пленка уже при толщине »0,1 мм полностью поглощает обыкновенные лучи видимой области спектра, являясь в таком тонком слое совершенным поляризатором. Преимущество поляроидов перед призмами — возможность изготовлять их с площадями поверхностей до нескольких квадратных метров. Однако степень поляризации в них сильнее зависит от l, чем в призмах. Кроме того, их меньшая по сравнению с призмами прозрачность (приблизительно 30%) в сочетании с небольшой термостойкостью не позволяет использовать поляроиды в мощных световых потоках. Поляроиды применяются, например, для защиты от ослепляющего действия солнечных лучей и фар встречного автотранспорта.

Разные кристаллы создают различное по значению и направлению двойное лучепреломление, поэтому, пропуская через них поляризованный свет и измеряя изменение его интенсивности после прохождения кристаллов, можно определить их оптические характеристики и производить минералогический анализ. Для этой цели используются поляризационные микроскопы.

Поляризация света при отражении и преломлении на границе двух диэлектриков

Двойное лучепреломление Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способностью двойного лучепреломления, т. е. раздваивания каждого падающего на них светового пучка. Это явление, в 1669 г. впервые обнаруженное датским ученым Э. Бартолином (1625—1698) для исландского шпата (разновидность кальцита СаСОз), объясняется особенностями распространения света в анизотропных средах и непосредственно вытекает из уравнений Максвелла.

Анализ поляризованного света Пусть на кристаллическую пластинку, вырезанную параллельно оптической оси, нормально падает плоскополяризованный свет. Внутри пластинки он разбивается на обыкновенный (о) и необыкновенный (е) лучи, которые в кристалле пространственно не разделены (но движутся с разными скоростями), а на выходе из кристалла складываются.

Искусственная оптическая анизотропия

Вращение плоскости поляризации Некоторые вещества (например, из твердых тел — кварц, сахар, киноварь, из жидкостей — водный раствор сахара, винная кислота, скипидар), называемые оптически активными, обладают способностью вращать плоскость поляризации.

Квантовая физика является более глубокой физической теорией, ибо она более полно объясняет большой круг физических явлений, нежели классическая физика. Квантовая механика установила, что ряд представлений классической физики не являются абсолютными, они хороши лишь для макроскопических тел. Но квантовая физика не отрицает полностью классическую. Она лишь ограничивает область ее применения. Законы классической механики и электродинамики для макротел остаются незыблемыми.
Оптическая физика